Block-diagonal covariance selection for high-dimensional Gaussian graphical models
نویسندگان
چکیده
Gaussian graphical models are widely utilized to infer and visualize networks of dependencies between continuous variables. However, inferring the graph is difficult when the sample size is small compared to the number of variables. To reduce the number of parameters to estimate in the model, we propose a non-asymptotic model selection procedure supported by strong theoretical guarantees based on an oracle type inequality and a minimax lower bound. The covariance matrix of the model is approximated by a block-diagonal matrix. The structure of this matrix is detected by thresholding the sample covariance matrix, where the threshold is selected using the slope heuristic. Based on the block-diagonal structure of the covariance matrix, the estimation problem is divided into several independent problems: subsequently, the network of dependencies between variables is inferred using the graphical lasso algorithm in each block. The performance of the procedure is illustrated on simulated data. An application to a real gene expression dataset with a limited sample size is also presented: the dimension reduction allows attention to be objectively focused on interactions among smaller subsets of genes, leading to a more parsimonious and interpretable modular network.
منابع مشابه
Edge selection based on the geometry of dually flat spaces for Gaussian graphical models
We propose a method for selecting edges in Gaussian graphical models. Our algorithm takes after our previous work, an extension of Least Angle Regression (LARS), and it is based on the information geometry of dually flat spaces. Non-diagonal elements of the inverse of the covariance matrix, the concentration matrix, play an important role in edge selection. Our iterative method estimates these ...
متن کاملNew Insights and Faster Computations for the Graphical Lasso
We consider the graphical lasso formulation for estimating a Gaussian graphical model in the high-dimensional setting. This approach entails estimating the inverse covariance matrix under a multivariate normal model by maximizing the 1-penalized log-likelihood. We present a very simple necessary and sufficient condition that can be used to identify the connected components in the graphical lass...
متن کاملJoint Structural Estimation of Multiple Graphical Models
Gaussian graphical models capture dependence relationships between random variables through the pattern of nonzero elements in the corresponding inverse covariance matrices. To date, there has been a large body of literature on both computational methods and analytical results on the estimation of a single graphical model. However, in many application domains, one has to estimate several relate...
متن کاملDiscussion : Latent Variable Graphical Model Selection via Convex Optimization
1. Introduction. We would like to congratulate the authors for their refreshing contribution to this high-dimensional latent variables graphical model selection problem. The problem of covariance and concentration matrices is fundamentally important in several classical statistical methodolo-gies and many applications. Recently, sparse concentration matrices estimation had received considerable...
متن کاملROCKET: Robust Confidence Intervals via Kendall's Tau for Transelliptical Graphical Models
Understanding complex relationships between random variables is of fundamental importance in high-dimensional statistics, with numerous applications in biological and social sciences. Undirected graphical models are often used to represent dependencies between random variables, where an edge between to random variables is drawn if they are conditionally dependent given all the other measured va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1511.04033 شماره
صفحات -
تاریخ انتشار 2015